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Abstract

A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow
season-ahead using exogenous climate variables for East Central China is presented.
The model provides estimates of the posterior forecasted probability distribution for
12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site5

correlation. The model has a multilevel structure with regression coefficients modeled
from a common multivariate normal distribution results in partial-pooling of information
across multiple stations and better representation of parameter and posterior distri-
bution uncertainty. Covariance structure of the residuals across stations is explicitly
modeled. Model performance is tested under leave-10-out cross-validation. Frequen-10

tist and Bayesian performance metrics used include Receiver Operating Characteristic,
Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and cover-
age by posterior credible intervals. The ability of the model to reliably forecast regional
summer rainfall and streamflow season-ahead offers potential for developing adaptive
water risk management strategies.15

1 Introduction

The Huai River Basin (Fig. 1), located between the Yangtze and Yellow River basins is
the most densely inhabited river basin and the main cropping area in China. The total
drainage area of 270 000 km2 is divided into the Huai River Catchment (190 000 km2)
and the Yishusi River Catchment (80 000 km2) by a paleo-channel of Yellow River.20

The mean annual precipitation for the Huai River Basin is approximately 900 mm, of
which 50–75 % occurs during the summer monsoon season. There are 36 large reser-
voirs in the basin primarily designed for water supply and flood control (Zhang et al.,
2012). Natural variations in climate in conjunction with increasing population demands
are causing severe water stress in the region. Moreover, the region is susceptible to25

droughts and floods with a recurrent frequency of four years on average (Yan et al.,
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2013; Cheng et al., 2012). Such variations and epochal changes are often related to
large scale climatic patterns that may have similar inter-annual fluctuations. Such tele-
connections are explored and formalized into a predictive model in a Bayesian frame-
work so that applications for water, food and energy management can be informed
ahead of the season. There is considerable interest today in strategies for climate risk5

mitigation and adaptation to a variable climate. The seasonal forecasting approach
provides a way for institutional planning and action in this context.

Interest in the development and application of long-lead hydrologic forecasts has
grown over the last decade primarily because of the improved monitoring of sea-
surface temperature (SST) in the tropical Pacific and advances in experimental climate10

forecasts from General
Circulation Models (GCMs). Since GCM-predicted fields are usually available at

large spatial scales, one needs to apply either dynamical or statistical downscaling
to develop regional hydrologic forecasts (Robertson et al., 2004; Gangopadhyay et al.,
2005). Alternately, one can develop a low-dimensional statistical model by relating the15

observed rainfall or streamflow to identified climatic precursors (e.g., El Nino Southern
Oscillation (ENSO) indices) for the given site (Souza and Lall, 2003). A key aspect in
developing such dynamic or statistical models is the ability to accurately represent the
uncertainties, both at the model representation level and at the parameter estimation
level. Developing statistical schemes that can address simultaneous prediction at mul-20

tiple sites and for multiple variables while addressing their correlation structure is often
a challenge.

Hierarchical Bayesian methods provide the opportunity to explicitly quantify the pa-
rameter uncertainty through each estimation stage using appropriate conditional and
prior distributions. This allows a better representation of model and parameter uncer-25

tainties. Recently, Devineni et al. (2013) presented a Hierarchical Bayesian Regression
strategy for estimating streamflow at multiple locations using various model structures
to pool information across multiple sites to an appropriate degree such that the features
that are common to the site regression and those that vary across sites can be identi-
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fied for an overall reduction in parameter uncertainty while preserving the structure in
errors across the stations. Here, a similar Hierarchical Bayesian approach is developed
for regional rainfall and streamflow forecasts using appropriate climate indicators that
could be derived from GCMs or observed climate fields. The application focuses on the
upper and middle regions of the Huai River Basin which are of interest for local man-5

agement, and may have similar climatic forcing. Section 2 provides a brief description
of the study area, data sources and the climate predictor identification. The Hierarchi-
cal Bayesian Regression model is presented in Sect. 3. In Sect. 4, the cross-validated
results are presented. A summary is finally presented.

1.1 Data description10

1.2 Streamflow and rainfall data

We used streamflow data from two stations and rainfall data from 12 stations in this
study to develop regional hydrologic forecasts. The streamflow data are from the
Bengbu (117.38◦ E, 32.56◦ N) and the Lutaizi (116.79◦ E, 32.57◦ N) hydrological sta-
tions (shown as red dots in Fig. 1). Twelve rainfall stations with at least 50 yr of data15

were selected in the contributing section of the basin (shown as filled triangles in Fig. 1).
The details of the hydrologic stations including the number of years of data records are
shown in Table 1. Preliminary analysis of the seasonality of streamflow and area av-
eraged rainfall show that more than 50 % of the annual rainfall and streamflow occurs
in June-July-August (JJA) (Fig. 2). Consequently, a prediction of the summer monsoon20

rainfall and streamflow in June or earlier is of interest.

1.3 Climate teleconnection and predictor identification

Xu et al. (2007) and Kwon et al. (2009) developed season ahead streamflow forecasts
for the Yangtze River on the Three Gorges Dam using exogenous climate indices from
eastern Indian Ocean and western Pacific Ocean. Recently, Liu et al. (2013) and Lin-25
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derhorm et al. (2013) investigated the relation between East Asian monsoon rainfall
and north Atlantic Sea Surface Temperature conditions using observations and paleo-
reconstructed records. So far little work has been done for climate informed hydrologic
prediction for the Huai River Basin. To identify predictors that influence the regional hy-
droclimate in the basin during JJA season, we consider SST anomaly conditions during5

February–March–April (FMA, 3 months lag) and October–November–December (OND,
6 months lag) obtained from the Hadley Center SST dataset (HADSST2) (Rayner et al.,
2006). Figure 3 shows the Spearman’s rank correlation between the observed stream-
flow during JJA at the Bengbu hydrologic station and the pre-season SST conditions.
The 3-month lag correlation (i.e. JJA streamflow with FMA SSTa) and the 6-month lag10

correlation (i.e. JJA streamflow with OND SSTa) are shown in Fig. 3a and b respec-
tively. From Fig. 3a, we see that the SST1 region (155◦ E–175◦ E and 40◦N–50◦ N)
influences the summer streamflow in the Huai River Basin. This region is associated
with the Kuroshio Current which is the west side of the clockwise North Pacific Ocean
gyre. This phenomenon was previously identified by Geng (1997). The warmer SSTs15

in the Kuroshio Current region and the mid latitude central pacific in late spring can
generate a large scale circulation pattern over the Asia-Pacific region that is favorable
for precipitation in the North China region. Hence, warm conditions in this region result
in above-normal inflow conditions in the Huai River. Similarly, from Fig. 3b, we can see
that 6-month prior conditions in the North Atlantic Ocean identified as SST2 (15◦ W–20

5◦ E and 35◦ N–55◦ N) influence the summer flows in the basin. This is in line with an
earlier finding (Gu et al., 2009a) who showed that the East Asian Summer Monsoons
are strongly related to triple mode of the North Atlantic SST anomalies in the preceding
winter that typically enhance the stationary wave-train propagating from west Eurasia
to East Asia. The correlations with SST1 and SST2 are statistically significant at the25

95 % level.
In addition to the SST anomaly conditions, we also considered the 4-month lagged

(February–March–April) North Atlantic Oscillations (NAO) (Hurrell et al., 2003), Sum-
mer North Atlantic Oscillation (SNAO) (Folland et al., 2009) and 6-month lagged
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(November–December–January) Atlantic Multi-decadal Oscillation (AMO) (Knight et
al., 2006) as candidate predictors. Gu et al. (2009b) showed that the January and
March NAO modulates the summer rainfall patterns over China. Following Linderholm
et al. (2011) we selected the SNAO as one of the predictors as it influences the storm
tracks over China with wetter than normal conditions during positive SNAO phase and5

drier than normal conditions during negative phase. Similarly, AMO has been shown
as an important covariate for climate in central Asia with positive AMO phase leading
to strong southeast summer monsoons and late retrieval (Lu et al., 2006). We also
checked the relationship between ENSO indices, Pacific Decadal Oscillation and the
Northern hemisphere snow cover with summer streamflow and rainfall in the basin.10

There was no statistically significant correlation between these covariates and stream-
flow or rainfall in the region. Table 2 summarizes the correlations between the two
streamflow stations, area averaged rainfall and the climate predictors selected for the
study.

2 Hierarchical Bayesian Model: methodology15

In this paper, we follow an approach similar to that used by Devineni et al. (2013) for
tree ring based streamflow reconstruction, but for multivariate seasonal forecasts for re-
gional streamflow and rainfall. The basic idea is that a particular climate predictor may
inform the rainfall or streamflow anomaly at each of the sites in the region in a similar
way. If the response were exactly the same, predicting the average of the station val-20

ues or pooling all the data into the same regression would be effective since that would
reduce the uncertainty associated with parameter estimation. However, the response
across the rainfall and the streamflow stations may vary systematically due to local
conditions or averaging scale (e.g., for a large river basin vs small or point rainfall).The
hierarchical model can be used for partial pooling of this common information, by con-25

sidering multiple levels of modeling. The individual regression coefficients for each site
on each climate predictor are estimated at the first level. The second level estimates
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the average regression coefficient across sites and its variance, thus allowing variation
in the response across sites, but also its potential shrinkage to an appropriate degree
through an estimation of the variance. If the variance estimated is large, then the model
tends towards a model that would be formed if each site was regressed independently
on the predictor. If the variance is small, then the model tends towards a fully pooled5

regression model, and the responses are deemed homogeneous. Partial-pooling re-
duces the equivalent number of independent parameters, resulting in lower uncertainty
in parameters estimates, and therefore reduced uncertainty in the final forecasts. The
general modeling framework is presented as follows.

Given that the station rainfall at location i for year t is Rit , and station streamflow at10

location i for year t is Sit , we form Y= {R, S}. The streamflow and rainfall data Y are
assumed to come from a distribution (process model) with probability density function
f (Y|θ), where θ is a parameter vector. In the application presented here, we consider
that log(Y) is normally distributed. This assumption was checked using a Shapiro-Wilks
test. Where a linear model is considered for log(Y) in terms of a set of climate predic-15

tors, the regression coefficients are interpretable as the fractional change in Y given
the corresponding predictor. This allows a consideration of partial pooling of response
to a particular climate predictor across rainfall and streamflow data series that may
have a disparate range or scale of values. The first level of the model considers that
at each site i , log(Yi ) is described by a Normal distribution with time varying mean µit20

that is informed by a regression on the 5 predictors Xt with intercept αi and a (5×14)
regression coefficient matrix β. The “errors” from the regression model are consid-
ered to be spatially correlated with a (14×14) covariance matrix Σ. The second level
of the model considers that the regression coefficient matrix β can be modeled as
coming from a multivariate Normal distribution with a (5×1) mean vector µβ which25

represents the average regression coefficient across the 14 sites for each predictor,
and a (5×5) covariance matrix Σβ that takes into account the correlation across the
predictors associated with the common effect across the 14 sites. The µβ and Σβ are
called hyper-parameters. The model and the priors associated with the parameters and
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the hyper-parameters are presented below:

Level 1 : log(Yt ) ∼ N (µt , Σ) . . . (1)

µit = αi + Xtβ. . . (2)

5

Level 2 : β ∼ MVN (µβ,Σβ). . . (3)

With priors modeled as:

αi ∼ N(0,10 000)

µβ ∼ N(0,10 000)10

Σβ ∼ Inv−Wishartv0
(Λ0)

Σ ∼ Inv−Wishartv1
(Λ1). . . (4)

The prior for the covariance matrix Σβ is taken to be the Inverse-Wishart distribution15

with a scale matrix Λ0 and ν0 degrees of freedom. In our applications, the scale ma-
trices Λ0 and Λ1 were specified as an identity matrix (I) and the degrees of freedom
ν0 and ν1 were set to one more than the dimension of the matrix (i.e. the total number
of predictors, five for Σβ and total number stations, 14 for Σ) to induce a uniform prior
distribution on the variance (Gelman and Hill, 2007). This choice of priors was made for20

computational convenience and represents a simpler model than could be formulated if
all parameter covariance were to be modeled. The joint posterior distribution p(θ |data),
of the complete parameter vector θ is derived by combining the prior distributions and
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the likelihood functions. The parameters θ are estimated using WinBUGS (Speigel-
halter et al., 1996) which employs the Gibbs sampler, a Markov Chain Monte Carlo
(MCMC) method for simulating the posterior probability distribution of the parameters
conditional on the current choice of parameters and the data. A discussion on such
model constructs and their comparison to a no pooling model that estimates indepen-5

dent regressions across sites and to a full pooling model that ignores the cross-site
variations in response is presented in Devineni et al. (2013). Several hydrologic appli-
cations using Bayesian model constructs have also been developed and demonstrated
in Lima and Lall (2009, 2010), and Kwon et al. (2008). Renard et al. (2013) present a
useful tutorial and examples of related Bayesian models for hydroclimatic applications.10

3 Results

The posterior distribution of the regression coefficients (β) for each climate predictor
and the mean of the vector of regression coefficients across sites (µβ) from the joint
normal distribution, is shown in Fig. 4 through boxplots of the values simulated from
the posterior density functions. All the predictors except NAO have positive coefficients15

for the mean response across sites. Note that the spread on each µβ covers the me-
dian of the 14 corresponding βs, as would be expected from partial pooling. With the
exception of the AMO, the β for streamflow tend to be higher and distinct from those
for rainfall. This is expected given that the streamflow represents a spatial averaging
of the rainfall process. One could consider modeling these as separate groups to be20

pooled. However, given that we have only 2 streamflow stations, pooling across them
would not provide much improvement. Modeling them together provides a larger sam-
ple size (14) for the estimation of the coefficients of the Level 2 model, and leads to
a higher spread in the posterior distribution of µβ than would result if we modeled the
rainfall and streamflow stations in separate groups. An averaging of a larger number of25

rainfall stations with streamflow stations that individually represent a spatial averaging
of rainfall is attractive from a conceptual perspective to regularize or reduce the uncer-
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tainty in the estimates of the response for the noisier rainfall stations. The simulations
of the covariance matrix across predictors, Σβ (results not shown), have non-zero off-
diagonal elements. If two predictors are highly correlated then their regression coeffi-
cients cannot be uniquely identified through classical or Bayesian regression. However,
their mean and covariance can be estimated and simulations of the log(Y) generated5

from the Bayesian model would be based on this covariance across the associated
regression coefficients. Hence, an appropriate range of log(Y) values will be gener-
ated for each prediction, even though the individual β are not uniquely identified due to
predictor correlation.

The posterior probability distributions of the forecasts from the model for the stream-10

flow at Bengbu station and rainfall at Shouxian station during the period 1996–2010 are
shown as boxplots in Fig. 5a and b respectively. While the Bayesian model is developed
using all the data, the forecasts are shown for the last 15 yr to make a cleaner figure.
Subsequent performance metrics are evaluated under cross-validation. The plots show
streamflow and rainfall values as the percentage difference each year from their long15

term average (1696 m3 s−1 for the flow at Bengbu station and 455 mm for rainfall at
Shouxian). We see that the directional indication of the forecast is generally quite ac-
curate while the uncertainty varies from year to year. From a forecast utility point of
view, knowing this uncertainty is useful since it can be used for developing probability
based risk management models for optimizing reservoir operations or agricultural de-20

cision models. To provide insight as to how this could be approached, we present, in
Fig. 6 the Receiver/Relative Operating Characteristic (ROC) plot (Mason, 1982) consid-
ering the decile categorical thresholds on the forecast posterior probability distribution
for each of the 14 forecasts. Forecasts with better discrimination from random chance
typically exhibit ROC curve approaching the upper-left corner of the diagram as op-25

posed to the 45◦ diagonal lines where the forecast has little ability to discriminate from
a 50–50 probability that occurs by chance. From Fig. 6, we see that the ROC curve
for all the 14 stations is well beyond the diagonal line and approaches the left corner
indicating that the forecasts exhibit hit rates higher than the false alarm rate and are

11568

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 11559–11584, 2013

Hierarchical Bayesian
Modeling

X. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

well calibrated to predict anomalous events using exogenous climate precursors. In re-
ality a decision maker could prescribe their own thresholds of interest and evaluate the
consequences of the forecast relative to the uncertainty and the threshold prescribed,
as part of the decision process.

The correlation of the forecasts across the stations is important to maintain for hydro-5

logic applications. Here, it is estimated from the posterior distribution of the streamflow
and rainfall and compared to the observed cross-site correlation. The results for two
stations (station1: streamflow from Bengbu station, station 11: rainfall from Shouxian
station) are shown in Fig. 5c and d respectively. The boxplots in Fig. 5c and d present
the posterior probability distribution of the correlations for these station with each of the10

13 other stations. The observed correlation for each station is shown as a triangle.
Thus far, we develop the above Bayesian model using all the data in the record and

evaluate the performance probabilistically with respect to historical data. Although, one
could argue that in a Bayesian context, cross validation is not required, cross-validation
statistics computed over different blocks of data can reveal how well the model can15

perform in truly out of sample predictions recognizing that different climate epochs may
lead to different model fits and performance. We present results from an m-fold cross
validation here. A sample is formed by leaving out m randomly selected data points
from the observational data set for validation and the Bayesian model is developed
using the remaining (n−m) observations. This process is repeated several times to20

obtain an ensemble of validation metrics resulting from each randomly selected model.
In the applications presented m was 10, n was 50, and 30 sample models were fit.
We used three traditional performance metrics, Reduction of Error (RE) and Coeffi-
cient of Efficiency (CE) and the Rank Probability Skill Score (RPSS), as measures of
model performance to compare the forecasted posterior mean and the distribution of25

the streamflow and rainfall estimates with the actual streamflow and rainfall data.
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The Reduction of Error (RE) ranges from −∞ to +1 and is similar to the R2 statistic
(Lorenz 1956; Fritts 1976).

RE = 1.0−

n∑
t=1

(Ot −St )
2

n∑
t=1

(Ot −oc)2

(5)

In Eq. (5), Ot and St are the observed and the predicted posterior mean of the stream-
flow (transformed back to real space by taking anti-logs) in year t of the validation5

period and oc is the mean of the observational data in the calibration period. RE>0
indicates that the simulated streamflow contains useful information not contained in
the calibration period. Similarly RE<0 indicates that the simulations are poorer than
climatology, i.e. the simulations are not better than the mean flows in the calibration
period. The coefficient of efficiency (CE) is defined as10

CE = 1.0−

n∑
t=1

(Ot −St )
2

n∑
t=1

(Ot −ov)2

(6)

In Eq. (6), Ot and St are the observed and the predicted posterior mean of the stream-
flow in year t of the validation period and ov is the mean of the observational data in
the validation period. CE<0 indicates that the simulations are poorer than validation
climatology, i.e. the simulations are not better than the mean flows in the validation15

period. CE is similar to RE, but used as a measure to evaluate the model under the
validation period, it is a more rigorous metric.

In addition to RE and CE that measure the error in predicting the conditional mean,
we also verified the RPSS to quantity the error in estimating the entire probability dis-
tribution of the forecast (Wilks, 2011; Candille and Talagrand, 2005; Gangopadhyay et20
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al., 2005). The RPSS is based on the ranked probability score (RPS) computed for
each forecast and observation pair at each station in each year:

RPS =
n∑

m=1

(Sm −Om)∧2 (7)

Where Sm is the cumulative probability of the forecast for category m and Om is the cu-
mulative probability of the observation for category m. This is implemented as follows.5

First, the observed time series is used to distinguish 3 possible categories for fore-
casts of streamflow and rainfall, naturally taking 33, 33 and 33 %. These categories are
determined separately for each year and stations in the basin. Next, for each forecast-
observation pair, the number of ensemble members forecast in each category is deter-
mined (out of 1000 ensemble members given by the HRB model), and their cumula-10

tive probabilities are computed. Similarly, the appropriate category for the observation
is identified and the observation’s cumulative probabilities are computed (i.e., all cate-
gories less than the observation’s position are assigned zero and all categories equal to
and greater than the observation’s position are assigned 1). Now the RPS is computed
as the squared difference between the observed and forecast cumulative probabilities,15

and the squared differences are summed over all three categories.
The RPSS is then computed as

RPSS = 1−
¯RPSforecast

¯RPSclimatology

(8)

Where ¯RPSforecast is the mean ranked probability score for model forecast and
¯RPSclimatology is the mean ranked probability score for climatologically forecast. RPSS20

represents the level of improvement of the forecast in comparison to reference fore-
casts which is usually assumed to be climatology. Similar to RE and CE, an RPSS>0
indicates that the forecasts have skill better that the climatology, and vice versa.
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The results for RE, CE, and RPSS performance under m-fold cross-validation for
each station are shown in Fig. 7. We observe that typically, the Hierarchical Bayesian
model leads to values of RE, CE and RPSS greater than zero for all the stations (ex-
cept Huoshan station −14) indicating that the seasonal forecasts developed using the
climate precursors contain useful information.5

In addition to computing these traditional performance measures, the performance
of the posterior probability distribution is assessed by examining the model’s ability to
cover the observed rainfall and flows within a specified credible interval under m-fold
cross validation. We estimated the coverage rates for the 90 % credible intervals under
cross-validation. For each validation period, we count the number of failures or the10

number of observations that are outside the 5th and 95th percentile of the posterior
distribution for each station resulting from the model developed using the fitting period.
By computing the total number of failures from all the randomly selected models, we
estimated the coverage rate as the percentage of failures for a total of 300 (30×10 yr)
forecasts. The average coverage rate across the stations is 92 % for the corresponding15

to the 90 % coverage interval indicating the robustness of the fitted Bayesian models
under cross-validation.

4 Summary and discussion

This study investigated the predictability of the summer rainfall and streamflow in the
upper and mid Huai River basin using 5 selected large scale climate indices as predic-20

tors. The partial-pooling hierarchical Bayesian regression model provided a useful way
to model spatial co-variability in seasonal hydrological predictions, while considering
the potentially common effects of the predictors on regional hydrologic response. An
advantage of the approach is that it allows appropriate grouping of information in the
region, and explicit modeling of the covariance of the model errors and the regression25

coefficients to better represent the uncertainty in both the model parameters and the
final streamflow and rainfall forecasts. Cross-validated model results show good pre-

11572

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 11559–11584, 2013

Hierarchical Bayesian
Modeling

X. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

dictive skill, and the common effects as well as the at site effects of each predictor
are identified well even under leave 20 % out cross validation. Our future work in the
region will focus on developing dynamic rules for operating multiple reservoir systems
in the basin using both multi-site seasonal hydrologic forecasts and changing demand
through adaptive human behavior to better manage deficits from the reservoirs. The5

refinement of the method applied here to disaggregating the rain and streamflow in
time over the season to properly capture monsoon breaks and the amplitude, duration
and spatial structure of rainfall events will be a goal for these applications.
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Table 1. Detail information for streamflow and rainfall station used in this study.

Station Station Elevation Actual data record
ID Name Abbreviation (m) Category & used for reconstruction

1 Bengbu BB 10.0 streamflow 1951–2010
2 Lutaizi LTZ 19.0 streamflow 1951–2010
3 Xuchang XC 66.8 rainfall 1952–2010
4 Xihua XH 52.6 rainfall 1955–2010
5 Zhumadian ZMD 82.7 rainfall 1958–2010
6 Xinyang XY 114.5 rainfall 1951–2010
7 Shangqiu SQ 50.1 rainfall 1953–2010
8 Gushi GS 57.1 rainfall 1952–2010
9 Bozhou BZ 37.7 rainfall 1953–2010

10 Fuyang FY 30.6 rainfall 1953–2010
11 Shouxian SX 22.7 rainfall 1955–2010
12 Bengbu BB 18.7 rainfall 1952–2010
13 Liuan LA 60.5 rainfall 1956–2010
14 Huoshan HS 68.1 rainfall 1954–2010
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Table 2. The correlation between streamflow/area rainfall and climate predictors chosen in this
studya.

SST1 SST2 AMO NAO SNAO

Lutaizi 0.44 (FMA) 0.45 (OND) 0.28 (NDJ) −0.26 (FMA) 0.39(FMA)
Bengbu 0.44 (FMA) 0.47 (OND) 0.21 (NDJ) −0.22(FMA) 0.34 (FMA)
Area rainfall 0.46 (FMA) 0.51 (OND) 0.36(NDJ) −0.27 (FMA) 0.36 (FMA)

a () is the selected period of the predictor for streamflow prediction; Area rainfall is the average rainfall of 12
stations in the study region.
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Figure1:  Location of the study area. 484 

  485 

Fig. 1. Location of the study area.

11578

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 11559–11584, 2013

Hierarchical Bayesian
Modeling

X. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

27 
 

 486 

 487 

 488 

Figure 2:  Seasonality of area rainfall and streamflow in study region. 489 

  490 

Fig. 2. Seasonality of area rainfall and streamflow in study region.
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Figure 3:  SST regions (SST1 and SST2) that influence the rainfall and streamflow in the Huai 493 

River Basin. SST regions that have significant correlation at 95% confidence interval (>0.25 or < 494 

-0.25) are considered as predictors for the Hierarchical Bayesian Model. 495 
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Fig. 3. SST regions (SST1 and SST2) that influence the rainfall and streamflow in the
Huai River Basin. SST regions that have significant correlation at 95 % confidence interval
(>0.25 or <−0.25) are considered as predictors for the Hierarchical Bayesian Model (SST1:
40◦ N∼50◦ N, 155◦ E∼175◦ E; SST2: 35◦ N∼55◦ N, 15◦ W∼5◦ E).
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 498 

Figure 4: Boxplots of the regression coefficients ij (open box) and the j mean of the 499 

regression coefficients (filled box) for the five predictors. The first two boxplots for each 500 

predictor correspond to the streamflow stations and the next 12 to the rainfall stations.   501 

  502 

Fig. 4. Boxplots of the regression coefficients βij (open box) and the µβj mean of the regres-
sion coefficients (filled box) for the five predictors. The first two boxplots for each predictor
correspond to the streamflow stations and the next 12 to the rainfall stations.
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 503 

Figure5:  The posterior probability distributions for JJA averaged streamflow and JJA total 504 

rainfall for (a) standardized streamflow at Bengbu station and (b) standardized rainfall at 505 

Shouxian station. The posterior distribution of the cross-site correlation for Bengbu station and 506 

for Shouxian station is presented in (c) and (d) respectively.  Each boxplot has the 25th, median 507 

and 75th percentile of the posterior distribution, with whiskers extended to the extreme values 508 

sampled. The solid triangle denotes the observation.    509 

 510 

Fig. 5. The posterior probability distributions for JJA averaged streamflow and JJA total rainfall
for (a) standardized streamflow at Bengbu station and (b) standardized rainfall at Shouxian sta-
tion. The posterior distribution of the cross-site correlation for Bengbu station and for Shouxian
station is presented in (c) and (d) respectively. Each boxplot has the 25th, median and 75th
percentile of the posterior distribution, with whiskers extended to the extreme values sampled.
The solid triangle denotes the observation.
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 511 

Figure 6: ROC plot from the forecasts based on decile categorical thresholds for all the 14 512 

streamflow and rainfall stations. 513 

 514 

515 

Fig. 6. ROC plot from the forecasts based on decile categorical thresholds for all the 14 stream-
flow and rainfall stations.
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516 

517 

 518 

Figure7: Performance under “leave 10 out cross validation” for all 14 stations from the 519 

hierarchical Bayesian model from 30 random simulations ((a) Reduction of Error (RE), (b) 520 

Coefficient of Efficiency (CE), (c) Rank probability skill score (RPSS)). 521 

 522 

Fig. 7. Performance under “leave 10 out cross validation” for all 14 stations from the hierarchical
Bayesian model from 30 random simulations ((a) Reduction of Error (RE), (b) Coefficient of
Efficiency (CE), (c) Rank probability skill score (RPSS)).

11584

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11559/2013/hessd-10-11559-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

